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  Can antineutrinos be used to monitor Pu content of reactor?

 Are undeclared fuel removals/diversions detectible with neutrinos?

  Are other fuels distinguishable from Lightly enriched Uranium (LEU),
e.g., 232Th-233U

  Can neutrinos verify the burnup of MOX-Pu fuel?

  Can neutrinos determine the isotopic content of spent fuel?

  Can neutrinos detect the movement/diversion of spent fuel?

Addressing Questions Raised Addressing Questions Raised at theat the
InterInternational national IAEA meeting Vienna 2003IAEA meeting Vienna 2003



Antineutrino Spectra for Different Fissionable material distinguishable

N(Eν) = Σ Yi(Ai,Zi) Σ b(Ej
0)  N(Eν,Ai,Zi,Ej

0) F(E,Z) 

Fission fragment yields
    ~ 300 Branching ratios

 ~ 10 per fragment

Fermi function

Approximately 10% of the beta decays have unknown end-point energies E0
Use continuous theory of beta-decay or energy-independent scaling



Reactor Burn Calculations using LANL code Monteburns
Monte Carlo burnup code that links MCNP transport with isotope

production/depletion code CINDER’90 (or ORIGEN2.1)
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Accurate reactor modeling for a broad class of fuels.
- Spatial and temporal power, fuel composition, radiation and decay heating

Detailed characterization of removed fuel content and emissions.
- Fuel proliferation index, weapons usability, decay signatures for safeguards



Antineutrino Spectrum for Different Fuel Diversion Scenarios

Start of cycle:
1/3 fresh 2.7% enriched
1/3 irradiated 1 year
1/3 irradiated 2 years

End of cycle:
1/3 irradiated 1 yr, 2 yr, 3 yr

Diversion of 10% (> Critical Mass):
37% fresh 2.7% enriched
33% 1 yr, 30% 2 yr

Gross Violation (diversion of 1/3):
2/3 fresh 2.7% enriched
1/3 irradiated 1 yr



238U  + n → 239U    →  239Np + β- + ν  → 239Pu + β- + ν
232Th + n → 233Th  →  233Pa + β- + ν  → 233U + β- + ν

Antineutrino Monitoring of Th-U-233  reactors -
Advanced Fuel cycle concept

σ=4.62 b

σ=1.73 b

Advantages of Th-U fuel cycle:
• Abundance of Th 3 times than U
•Reduced proliferation hazard
• Reduced radiological hazard

Main Disadvantage:
•Requires fissile seed (235U)
  to initiate cycle

Seed: LEU (238U + 2.7%235U)
Blanket:Blanket: ThO2 or Th02 + 20% LEU



Proliferation Implications for Th-U Cycle

Weapons usability of 233U determined by the proliferation index

Proliferation Index:

     PI  =  233U + 0.6 235U            <  12%  if non-weapons usable

 PI typically requires about 20% of Th02 rods to contain LEU (238U + 2.6% 235U)

Examine antineutrino spectra differences for Th-U fuels comply/violate PI

Utotal



Derived β/ν spectra for 232Th and  233U from ENDF/B-VI data

232Th spectrum very similar to 238U - enhanced
233U   spectrum very similar to 239P - suppressed 



Reactor Burn calculation for Th-U cycle
a. Th02+LEU PI compliant

            b. ThO2 to max weapons usability

 Fast in-growth of 233U in both cases, but especially for pure Th02
 
 Burn for the purposes of producing weapons usable 233U very distinctive

a. b.



Antineutrino Spectra for Th-233U cycles

Number of ν/fission drops steadily as 233U grows
Considerably faster drop than seen from in-growth of Pu in PWR LEU case



Situation Complicated by Change in Power Density
for Th-U Burn

• For PWR LEU reactors power density remains approximately constant

• For Th-U reactors the power would be shared between LEU seed
assemblies and Th-U blanket assemblies.

• Power in Th-U-233 assemblies can change significantly over several
cycles and be compensated for by a change in the LEU power

Need detailed model of
change in power density
in order to determine
expected change in
antineutrino spectrum



Burning of Weapons-grade and Reactor-grade MOX Pu

                    Schemes to burn MOX fuel to burn Pu
                                 U02 + 5.3% PuO2

 

w% Weapons-Grade Reactor-Grade 

U-235 0.67897% 0.67897% 

U-238 93.622% 93.622% 

Pu-238 - 0.2026% 

Pu-239 5.0% 2.6527% 

Pu-240 0.3% 1.373% 

Pu-241 - 0.5345% 

Pu-242 - 0.5372% 

 

Starting Isotopics for  Weapons- and Reactor-grade fuels



Antineutrino Spectra Emitted for Pu MOX Fuels
Clearly Distinguishable

Number Antineutrinos/fission increase with burn for MOX PU

May be able to distinguish grade of fuel from power density



Monitoring Spent Fuel

The antineutrino source describes total activity well

-essentially all decays are β-decay.

Calculated activity of discharged fuel drops to:

               7.5% in the 4 weeks

               1.5% in a year

               0.2% in 10 years

Fuel assembly would have to be moved far from reactor



Radioactivity at WIPP
Carlsbad, NM

WIPP designed to store ~ 9000 Mtonnes
of radioactive waste

Presently 25% full

Radioactivity includes:
Antineutrinos
Betas
Delayed photons
Alphas
Delayed neutrons

WIPP antineutrino and beta spectra
Dominated by 241Pu 18 keV β-decay



Summary

• For LEU PWR gross changes in fuel content likely to be observable

•  Diversions of a critical mass of Pu from GW LEU PWR difficult to detect

• Th-U233 fuels distinguishable from LEU

• Violations of the proliferation index for Th-U233 quite distinguishable.-

important for monitoring the proposed Indian breeder reactor program.

• Burning of MOX Pu fuels also distinguishable

• Antineutrino spectrum from spent fuel peaks at very low energies


